3.472 \(\int (c+a^2 c x^2)^{3/2} \sqrt {\sinh ^{-1}(a x)} \, dx\)

Optimal. Leaf size=319 \[ \frac {\sqrt {\pi } c \sqrt {a^2 c x^2+c} \text {erf}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{256 a \sqrt {a^2 x^2+1}}+\frac {\sqrt {\frac {\pi }{2}} c \sqrt {a^2 c x^2+c} \text {erf}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {a^2 x^2+1}}-\frac {\sqrt {\pi } c \sqrt {a^2 c x^2+c} \text {erfi}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{256 a \sqrt {a^2 x^2+1}}-\frac {\sqrt {\frac {\pi }{2}} c \sqrt {a^2 c x^2+c} \text {erfi}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {a^2 x^2+1}}+\frac {1}{4} x \left (a^2 c x^2+c\right )^{3/2} \sqrt {\sinh ^{-1}(a x)}+\frac {c \sqrt {a^2 c x^2+c} \sinh ^{-1}(a x)^{3/2}}{4 a \sqrt {a^2 x^2+1}}+\frac {3}{8} c x \sqrt {a^2 c x^2+c} \sqrt {\sinh ^{-1}(a x)} \]

[Out]

1/4*c*arcsinh(a*x)^(3/2)*(a^2*c*x^2+c)^(1/2)/a/(a^2*x^2+1)^(1/2)+1/32*c*erf(2^(1/2)*arcsinh(a*x)^(1/2))*2^(1/2
)*Pi^(1/2)*(a^2*c*x^2+c)^(1/2)/a/(a^2*x^2+1)^(1/2)-1/32*c*erfi(2^(1/2)*arcsinh(a*x)^(1/2))*2^(1/2)*Pi^(1/2)*(a
^2*c*x^2+c)^(1/2)/a/(a^2*x^2+1)^(1/2)+1/256*c*erf(2*arcsinh(a*x)^(1/2))*Pi^(1/2)*(a^2*c*x^2+c)^(1/2)/a/(a^2*x^
2+1)^(1/2)-1/256*c*erfi(2*arcsinh(a*x)^(1/2))*Pi^(1/2)*(a^2*c*x^2+c)^(1/2)/a/(a^2*x^2+1)^(1/2)+1/4*x*(a^2*c*x^
2+c)^(3/2)*arcsinh(a*x)^(1/2)+3/8*c*x*(a^2*c*x^2+c)^(1/2)*arcsinh(a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.41, antiderivative size = 319, normalized size of antiderivative = 1.00, number of steps used = 24, number of rules used = 11, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {5684, 5682, 5675, 5669, 5448, 12, 3308, 2180, 2204, 2205, 5779} \[ \frac {\sqrt {\pi } c \sqrt {a^2 c x^2+c} \text {Erf}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{256 a \sqrt {a^2 x^2+1}}+\frac {\sqrt {\frac {\pi }{2}} c \sqrt {a^2 c x^2+c} \text {Erf}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {a^2 x^2+1}}-\frac {\sqrt {\pi } c \sqrt {a^2 c x^2+c} \text {Erfi}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{256 a \sqrt {a^2 x^2+1}}-\frac {\sqrt {\frac {\pi }{2}} c \sqrt {a^2 c x^2+c} \text {Erfi}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {a^2 x^2+1}}+\frac {1}{4} x \left (a^2 c x^2+c\right )^{3/2} \sqrt {\sinh ^{-1}(a x)}+\frac {c \sqrt {a^2 c x^2+c} \sinh ^{-1}(a x)^{3/2}}{4 a \sqrt {a^2 x^2+1}}+\frac {3}{8} c x \sqrt {a^2 c x^2+c} \sqrt {\sinh ^{-1}(a x)} \]

Antiderivative was successfully verified.

[In]

Int[(c + a^2*c*x^2)^(3/2)*Sqrt[ArcSinh[a*x]],x]

[Out]

(3*c*x*Sqrt[c + a^2*c*x^2]*Sqrt[ArcSinh[a*x]])/8 + (x*(c + a^2*c*x^2)^(3/2)*Sqrt[ArcSinh[a*x]])/4 + (c*Sqrt[c
+ a^2*c*x^2]*ArcSinh[a*x]^(3/2))/(4*a*Sqrt[1 + a^2*x^2]) + (c*Sqrt[Pi]*Sqrt[c + a^2*c*x^2]*Erf[2*Sqrt[ArcSinh[
a*x]]])/(256*a*Sqrt[1 + a^2*x^2]) + (c*Sqrt[Pi/2]*Sqrt[c + a^2*c*x^2]*Erf[Sqrt[2]*Sqrt[ArcSinh[a*x]]])/(16*a*S
qrt[1 + a^2*x^2]) - (c*Sqrt[Pi]*Sqrt[c + a^2*c*x^2]*Erfi[2*Sqrt[ArcSinh[a*x]]])/(256*a*Sqrt[1 + a^2*x^2]) - (c
*Sqrt[Pi/2]*Sqrt[c + a^2*c*x^2]*Erfi[Sqrt[2]*Sqrt[ArcSinh[a*x]]])/(16*a*Sqrt[1 + a^2*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5669

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Sinh[x]^m*Cosh[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 5682

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(x*Sqrt[d + e*x^2]*
(a + b*ArcSinh[c*x])^n)/2, x] + (Dist[Sqrt[d + e*x^2]/(2*Sqrt[1 + c^2*x^2]), Int[(a + b*ArcSinh[c*x])^n/Sqrt[1
 + c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(2*Sqrt[1 + c^2*x^2]), Int[x*(a + b*ArcSinh[c*x])^(n - 1),
x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]

Rule 5684

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(x*(d + e*x^2)^p*
(a + b*ArcSinh[c*x])^n)/(2*p + 1), x] + (Dist[(2*d*p)/(2*p + 1), Int[(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^
n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/((2*p + 1)*(1 + c^2*x^2)^FracPart[p]), Int[x*(1
+ c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && Gt
Q[n, 0] && GtQ[p, 0]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rubi steps

\begin {align*} \int \left (c+a^2 c x^2\right )^{3/2} \sqrt {\sinh ^{-1}(a x)} \, dx &=\frac {1}{4} x \left (c+a^2 c x^2\right )^{3/2} \sqrt {\sinh ^{-1}(a x)}+\frac {1}{4} (3 c) \int \sqrt {c+a^2 c x^2} \sqrt {\sinh ^{-1}(a x)} \, dx-\frac {\left (a c \sqrt {c+a^2 c x^2}\right ) \int \frac {x \left (1+a^2 x^2\right )}{\sqrt {\sinh ^{-1}(a x)}} \, dx}{8 \sqrt {1+a^2 x^2}}\\ &=\frac {3}{8} c x \sqrt {c+a^2 c x^2} \sqrt {\sinh ^{-1}(a x)}+\frac {1}{4} x \left (c+a^2 c x^2\right )^{3/2} \sqrt {\sinh ^{-1}(a x)}+\frac {\left (3 c \sqrt {c+a^2 c x^2}\right ) \int \frac {\sqrt {\sinh ^{-1}(a x)}}{\sqrt {1+a^2 x^2}} \, dx}{8 \sqrt {1+a^2 x^2}}-\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {\cosh ^3(x) \sinh (x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{8 a \sqrt {1+a^2 x^2}}-\frac {\left (3 a c \sqrt {c+a^2 c x^2}\right ) \int \frac {x}{\sqrt {\sinh ^{-1}(a x)}} \, dx}{16 \sqrt {1+a^2 x^2}}\\ &=\frac {3}{8} c x \sqrt {c+a^2 c x^2} \sqrt {\sinh ^{-1}(a x)}+\frac {1}{4} x \left (c+a^2 c x^2\right )^{3/2} \sqrt {\sinh ^{-1}(a x)}+\frac {c \sqrt {c+a^2 c x^2} \sinh ^{-1}(a x)^{3/2}}{4 a \sqrt {1+a^2 x^2}}-\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \left (\frac {\sinh (2 x)}{4 \sqrt {x}}+\frac {\sinh (4 x)}{8 \sqrt {x}}\right ) \, dx,x,\sinh ^{-1}(a x)\right )}{8 a \sqrt {1+a^2 x^2}}-\frac {\left (3 c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {\cosh (x) \sinh (x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{16 a \sqrt {1+a^2 x^2}}\\ &=\frac {3}{8} c x \sqrt {c+a^2 c x^2} \sqrt {\sinh ^{-1}(a x)}+\frac {1}{4} x \left (c+a^2 c x^2\right )^{3/2} \sqrt {\sinh ^{-1}(a x)}+\frac {c \sqrt {c+a^2 c x^2} \sinh ^{-1}(a x)^{3/2}}{4 a \sqrt {1+a^2 x^2}}-\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {\sinh (4 x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{64 a \sqrt {1+a^2 x^2}}-\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {\sinh (2 x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{32 a \sqrt {1+a^2 x^2}}-\frac {\left (3 c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {\sinh (2 x)}{2 \sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{16 a \sqrt {1+a^2 x^2}}\\ &=\frac {3}{8} c x \sqrt {c+a^2 c x^2} \sqrt {\sinh ^{-1}(a x)}+\frac {1}{4} x \left (c+a^2 c x^2\right )^{3/2} \sqrt {\sinh ^{-1}(a x)}+\frac {c \sqrt {c+a^2 c x^2} \sinh ^{-1}(a x)^{3/2}}{4 a \sqrt {1+a^2 x^2}}+\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{-4 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{128 a \sqrt {1+a^2 x^2}}-\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{4 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{128 a \sqrt {1+a^2 x^2}}+\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{-2 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{64 a \sqrt {1+a^2 x^2}}-\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{64 a \sqrt {1+a^2 x^2}}-\frac {\left (3 c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {\sinh (2 x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{32 a \sqrt {1+a^2 x^2}}\\ &=\frac {3}{8} c x \sqrt {c+a^2 c x^2} \sqrt {\sinh ^{-1}(a x)}+\frac {1}{4} x \left (c+a^2 c x^2\right )^{3/2} \sqrt {\sinh ^{-1}(a x)}+\frac {c \sqrt {c+a^2 c x^2} \sinh ^{-1}(a x)^{3/2}}{4 a \sqrt {1+a^2 x^2}}+\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int e^{-4 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{64 a \sqrt {1+a^2 x^2}}-\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int e^{4 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{64 a \sqrt {1+a^2 x^2}}+\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int e^{-2 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{32 a \sqrt {1+a^2 x^2}}-\frac {\left (c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int e^{2 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{32 a \sqrt {1+a^2 x^2}}+\frac {\left (3 c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{-2 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{64 a \sqrt {1+a^2 x^2}}-\frac {\left (3 c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{64 a \sqrt {1+a^2 x^2}}\\ &=\frac {3}{8} c x \sqrt {c+a^2 c x^2} \sqrt {\sinh ^{-1}(a x)}+\frac {1}{4} x \left (c+a^2 c x^2\right )^{3/2} \sqrt {\sinh ^{-1}(a x)}+\frac {c \sqrt {c+a^2 c x^2} \sinh ^{-1}(a x)^{3/2}}{4 a \sqrt {1+a^2 x^2}}+\frac {c \sqrt {\pi } \sqrt {c+a^2 c x^2} \text {erf}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{256 a \sqrt {1+a^2 x^2}}+\frac {c \sqrt {\frac {\pi }{2}} \sqrt {c+a^2 c x^2} \text {erf}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{64 a \sqrt {1+a^2 x^2}}-\frac {c \sqrt {\pi } \sqrt {c+a^2 c x^2} \text {erfi}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{256 a \sqrt {1+a^2 x^2}}-\frac {c \sqrt {\frac {\pi }{2}} \sqrt {c+a^2 c x^2} \text {erfi}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{64 a \sqrt {1+a^2 x^2}}+\frac {\left (3 c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int e^{-2 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{32 a \sqrt {1+a^2 x^2}}-\frac {\left (3 c \sqrt {c+a^2 c x^2}\right ) \operatorname {Subst}\left (\int e^{2 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{32 a \sqrt {1+a^2 x^2}}\\ &=\frac {3}{8} c x \sqrt {c+a^2 c x^2} \sqrt {\sinh ^{-1}(a x)}+\frac {1}{4} x \left (c+a^2 c x^2\right )^{3/2} \sqrt {\sinh ^{-1}(a x)}+\frac {c \sqrt {c+a^2 c x^2} \sinh ^{-1}(a x)^{3/2}}{4 a \sqrt {1+a^2 x^2}}+\frac {c \sqrt {\pi } \sqrt {c+a^2 c x^2} \text {erf}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{256 a \sqrt {1+a^2 x^2}}+\frac {c \sqrt {\frac {\pi }{2}} \sqrt {c+a^2 c x^2} \text {erf}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {1+a^2 x^2}}-\frac {c \sqrt {\pi } \sqrt {c+a^2 c x^2} \text {erfi}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{256 a \sqrt {1+a^2 x^2}}-\frac {c \sqrt {\frac {\pi }{2}} \sqrt {c+a^2 c x^2} \text {erfi}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {1+a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 142, normalized size = 0.45 \[ \frac {c \sqrt {a^2 c x^2+c} \left (-\sqrt {-\sinh ^{-1}(a x)} \Gamma \left (\frac {3}{2},-4 \sinh ^{-1}(a x)\right )-8 \sqrt {2} \sqrt {-\sinh ^{-1}(a x)} \Gamma \left (\frac {3}{2},-2 \sinh ^{-1}(a x)\right )+\sqrt {\sinh ^{-1}(a x)} \left (32 \sinh ^{-1}(a x)^{3/2}-8 \sqrt {2} \Gamma \left (\frac {3}{2},2 \sinh ^{-1}(a x)\right )-\Gamma \left (\frac {3}{2},4 \sinh ^{-1}(a x)\right )\right )\right )}{128 a \sqrt {a^2 x^2+1} \sqrt {\sinh ^{-1}(a x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c + a^2*c*x^2)^(3/2)*Sqrt[ArcSinh[a*x]],x]

[Out]

(c*Sqrt[c + a^2*c*x^2]*(-(Sqrt[-ArcSinh[a*x]]*Gamma[3/2, -4*ArcSinh[a*x]]) - 8*Sqrt[2]*Sqrt[-ArcSinh[a*x]]*Gam
ma[3/2, -2*ArcSinh[a*x]] + Sqrt[ArcSinh[a*x]]*(32*ArcSinh[a*x]^(3/2) - 8*Sqrt[2]*Gamma[3/2, 2*ArcSinh[a*x]] -
Gamma[3/2, 4*ArcSinh[a*x]])))/(128*a*Sqrt[1 + a^2*x^2]*Sqrt[ArcSinh[a*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^(3/2)*arcsinh(a*x)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^(3/2)*arcsinh(a*x)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 0.39, size = 0, normalized size = 0.00 \[ \int \left (a^{2} c \,x^{2}+c \right )^{\frac {3}{2}} \sqrt {\arcsinh \left (a x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2*c*x^2+c)^(3/2)*arcsinh(a*x)^(1/2),x)

[Out]

int((a^2*c*x^2+c)^(3/2)*arcsinh(a*x)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a^{2} c x^{2} + c\right )}^{\frac {3}{2}} \sqrt {\operatorname {arsinh}\left (a x\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^(3/2)*arcsinh(a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((a^2*c*x^2 + c)^(3/2)*sqrt(arcsinh(a*x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \sqrt {\mathrm {asinh}\left (a\,x\right )}\,{\left (c\,a^2\,x^2+c\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(asinh(a*x)^(1/2)*(c + a^2*c*x^2)^(3/2),x)

[Out]

int(asinh(a*x)^(1/2)*(c + a^2*c*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac {3}{2}} \sqrt {\operatorname {asinh}{\left (a x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a**2*c*x**2+c)**(3/2)*asinh(a*x)**(1/2),x)

[Out]

Integral((c*(a**2*x**2 + 1))**(3/2)*sqrt(asinh(a*x)), x)

________________________________________________________________________________________